Question:

1. Sketch a composition triangle to represent composition of a ternary alloy and locate the alloys having following compositions (a) 20A 40B 40C (b) 60A20B20C
2. In a ternary system estimate amount of $\alpha \& \beta$ in an alloy having $22.5 \% \mathrm{~A}, 23.5 \% \mathrm{~B}, 50 \% \mathrm{C}$ at a given temperature T where three phases a, b and liquid are in equilibrium. Composition of these three phases are liquid: 15A 15B70C, α : 60A20B20C, $\beta: 20 A 40 B 20 C$
3. Find out the composition of the alloy which has $50 \% \alpha \& 50 \% \beta$ at temperature T for sytem described in problem 2.
4. A ternary system consisting of three metals $A, B \& C$ has two binary eutectics; one between A \& B and the other between $B \& C$ and one binary isomorphous system between $A \& C$. The system has two terminal solid solutions (α and β). Assume that the temperature of binary eutectic between $A \& B$ is higher than that of $B \& C$. (a) Sketch a space model of this system indicating single phase, two phase and three phase regions. (b) Sketch an isothermal section at a temperature where there are single phase, two phase and three phase regions. (c) Sketch a vertical section passing through B and the midpoint between $A \& C$ of the composition triangle.

Answer:
1.

2. Isothermal section at temperature T is given in the following figure. Alloy composition is represented by point x. This lies within a triangle whose vertices denote the composition of α, β and liquid. Join the points $\alpha \& \beta$ with x and extend these lines to meet the opposite side at points $m \& n$. Measure the lengths $\alpha n, x n, \beta m \& x m$.

$$
\begin{aligned}
& \% \alpha=\frac{x n}{\alpha n} \times 100 \\
& \% \beta=\frac{x m}{\beta m} \times 100
\end{aligned}
$$

3. Alloy having $50 \% \alpha+50 \% \beta$ is the mid point of tie line $\alpha \beta$ of the above diagram. In this case it is 40\%A 30\%B 30\%C
4. Sketch of the 3-D model of this system:
(a)

Note: line joining eutectic point P with Q is above the surface joining DEFG. There is a surface joining lines DE with FG passing through line PQ. Triangle mno is a section of the region between these two surfaces.
(b)

(c)

